Combination of HSV and Lacunarity for Feature Extraction on Butterfly Dataset
Kombinasi HSV dan Lacunarity untuk Ekstraksi Fitur pada dataset Kupu-Kupu
Abstract
Ekstraksi fitur pada kupu-kupu menggunakan HSV dan lacunarity. Fungsi dari ekstraksi fitur digunakan untuk membedaakan fitur dataset kupu-kupu. Pada penelitian ini, 84 dataset digunakan dengan 5 macam spesies. Tahap pertama penelitian ini yaitu extraksi fitur menggunakan HSV, fungsi dari ekstraksi HSV digunakan untuk ekstraksi warna pada kupu-kupu, step kedua extraksi fitur menggunakan lacunarity, lacunarity digunakan untuk ekstraksi tekstur pada kupu-kupu. Tahap terakhir yaitu klasifikasi menggunakan MLP, fungsi metode MLP digunakan untuk klasifikasi spesies daru kupu-kupu. Hasil dari metode ini menghasilkan 62,55%.
References
[2] D. S. Y. Kartika, D. Herumurti, and A. Yuniarti, “Local binary pattern method and feature shape extraction for detecting butterfly image,” Int. J. GEOMATE, vol. 15, no. 50, pp. 127–133, 2018, doi: 10.21660/2018.50.IJCST21.
[3] P. N. Rahayu, R. F. Rizal, and F. Yumono, “Malika Soybean Quality Classification using GLCM and Lacunarity features,” JTECS J. Sist. Telekomun. Elektron. Sist. Kontrol Power Sist. dan Komput., vol. 4, no. 1, p. 83, 2024, doi: 10.32503/jtecs.v4i1.4942.
[4] A. Mohan and J. Peeples, “Lacunarity Pooling Layers for Plant Image Classification using Texture Analysis,” pp. 5384–5392, 2024, doi: 10.1109/CVPRW63382.2024.00547.
[5] C. Madhura and D. Dheeraj, “Feature Extraction for Image Retrieval Using Color Spaces and GLCM,” Int. J. Innov. Technol. Explor. Eng., vol. 3, no. 2, pp. 159–162, 2013.
[6] A. M. A. Efendi, S. Sriani, and M. S. Hasibuan, “Classification of Watermelon Ripeness Levels Using HSV Color Space Transformation and K-Nearest Neighbor Method,” J. Comput. Networks, Archit. High Perform. Comput., vol. 6, no. 3, pp. 934–948, 2024, doi: 10.47709/cnahpc.v6i3.3999.
[7] M. Alrahhal and K. P. Supreethi, “Enhancing image retrieval accuracy through multi-resolution HSV-LNP feature fusion and modified K-NN relevance feedback,” Int. J. Inf. Technol., no. June, 2024, doi: 10.1007/s41870-024-02000-y.
[8] E. N. Tamatjita and R. D. Sihite, “Banana Ripeness Classification using HSV Colour Space and Nearest Centroid Classifier,” Inf. Eng. Express, vol. 8, no. 1, p. 1, 2022, doi: 10.52731/iee.v8.i1.687.
[9] H. Zhai, M. Chen, X. Yang, and G. Kang, “Multi-scale HSV Color Feature Embedding for High-fidelity NIR-to-RGB Spectrum Translation,” pp. 2–7, 2024, [Online]. Available: http://arxiv.org/abs/2404.16685.
[10] Mohammad Yazdi Pusadan, Indah Safitri, and Wirdayanti, “The Image Extraction Using the HSV Method to Determine the Maturity Level of Palm Oil Fruit with the k-nearest Neighbor Algorithm,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 6, pp. 1448–1456, 2023, doi: 10.29207/resti.v7i6.5558.
[11] “Earth and Space Science - 2022 - Scott - A Lacunarity‐Based Index for Spatial Heterogeneity.pdf.”
[12] D. A. Palanivel, S. Natarajan, S. Gopalakrishnan, and R. Jennane, “Multifractal-based lacunarity analysis of trabecular bone in radiography,” Comput. Biol. Med., vol. 116, no. November 2019, p. 103559, 2020, doi: 10.1016/j.compbiomed.2019.103559.
[13] Y. Wei, J. Jang-Jaccard, F. Sabrina, A. Singh, W. Xu, and S. Camtepe, “AE-MLP: A Hybrid Deep Learning Approach for DDoS Detection and Classification,” IEEE Access, vol. 9, pp. 146810–146821, 2021, doi: 10.1109/ACCESS.2021.3123791.
[14] J. Zhang, C. Li, Y. Yin, J. Zhang, and M. Grzegorzek, Applications of artificial neural networks in microorganism image analysis: a comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer, vol. 56, no. 2. Springer Netherlands, 2023. doi: 10.1007/s10462-022-10192-7.
[15] N. Dewi Girsang and Muhathir, “Classification Of Batik Images Using Multilayer Perceptron With Histogram Of Oriented Gradient Feature Extraction,” Proceeding Int. Conf. Sci. Eng., vol. 4, no. February, pp. 197–204, 2021, [Online]. Available: https://ejournal.uin-suka.ac.id/saintek/icse/article/view/2904/2264
[16] B. Maulana Alfaruq, D. Erwanto, and I. Yanuartanti, “Klasifikasi Kematangan Buah Tomat Dengan Metode Support Vector Machine,” Generation Journal, vol. 7, no. 3, 2023, doi: 10.29407/gj.v7i3.21092.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.