Detection of Porang Plant Diseases and Pests (Amorphophallus Muelleri) Based on Leaf Imagery Utilizing DCNN Transfer Learning

Deteksi Penyakit Dan Hama Tanaman Porang (Amorphophallus Muelleri) Berdasarkan Citra Daun Memanfaatkan DCNN Transfer Learning

  • Miftahuz Zuhan Institut Sains Dan Teknologi Terpadu Surabaya
  • Yosi Kristian Institut Sains Dan Teknologi Terpadu Surabaya

Abstract

Produk olahan dari umbi tanaman porang (Amorphophallus muelleri) selalu diminati di kawasan Asia: Jepang, China, Korea, serta negara kawasan Australia. Umbi tanaman porang dapat digunakan sebagai bahan baku industri kosmetik dan juga memiliki potensi untuk mencegah berbagai penyakit manusia, karena memiliki kandungan glaukoma yang tinggi. Untuk mendapatkan umbi porang yang berkualitas baik, banyak petani menghadapi berbagai penyakit seperti penyakit busuk daun, virus mozaik (mosaik konjac) dan serangan hama pada daun tanaman porang. Dalam studi ini, diajukan sebuah arsitektur deep learning untuk klasifikasi penyakit daun pada tanaman porang. Kinerja dari model CNN Custome dibandingkan dengan model deep learning lainnya. Semua model dilatih pada kumpulan data asli dan data augmentasi dari 1000 gambar. Pendekatan Transfer Learning digunakan untuk melatih semua model deep learning. Hasil pengujian dataset menunjukkan bahwa model arsitektur EfficientNetV2M mencapai skor tertinggi dibandingkan dengan model deep learning lainnya pada dataset augmentasi dengan akurasi sebesar 98,44%. Sedang ResNet50 pada dataset asli dengan nilai 97,66% pada dataset asli, sedangkan CNN Custome dengan akurasi sebesar 89,06% dan 85,94% untuk semua dataset.

References

[1] M. Rofikhoh, Kusnul and Setiahadi, Rahmanta and Puspitawati, Indah Rekyani and Lukito, “Potensi produksi tanaman porang (amorphophallus muelleri blume) di kelompok tani mpsdh wono lestari desa padas kecamatan dagangan kabupaten madiun.,” J. Agri-Tek, vol. 17, no. 2, 2017.

[2] F. Soedarjo, M and Djufry, “Identified diseases would threaten on the expansion of Amorphophallus muellery Blume cultivation in Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 648, no. 1, p. 012043, 2021.

[3] M. Brahimi, K. Boukhalfa, and A. Moussaoui, “Deep learning for tomato diseases: classification and symptoms visualization,” Appl. Artif. Intell., vol. 31, no. 4, pp. 299–315, 2017.

[4] Y. Lu, Yang and Yi, Shujuan and Zeng, Nianyin and Liu, Yurong and Zhang, “Identification of rice diseases using deep convolutional neural networks,” Neurocomputing, vol. 267, pp. 378--384, 2017.

[5] D. S. Fuentes, Alvaro and Yoon, Sook and Kim, Sang Cheol and Park, “A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition,” Sensors, vol. 17, no. 9, p. 2022, 2017.

[6] M. Sibiya, Malusi and Sumbwanyambe, “A computational procedure for the recognition and classification of maize leaf diseases out of healthy leaves using convolutional neural networks,” AgriEngineering, vol. 1, pp. 119--131, 2019.

[7] X. Xie, Y. Ma, B. Liu, J. He, S. Li, and H. Wang, “A deep-learning-based real-time detector for grape leaf diseases using improved convolutional neural networks,” Front. Plant Sci., vol. 11, p. 751, 2020.

[8] D. Hughes, M. Salathé, and others, “An open access repository of images on plant health to enable the development of mobile disease diagnostics,” arXiv Prepr. arXiv1511.08060, 2015.

[9] G. Geetharamani and A. Pandian, “Identification of plant leaf diseases using a nine-layer deep convolutional neural network,” Comput. Electr. Eng., vol. 76, pp. 323–338, 2019.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv Prepr. arXiv1409.1556, 2014.

[11] S. Tammina, “Transfer learning using vgg-16 with deep convolutional neural network for classifying images,” Int. J. Sci. Res. Publ., vol. 9, pp. 143--150, 2019.

[12] J. He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770--778.

[13] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in International conference on machine learning, 2019, pp. 6105–6114.

[14] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4510–4520.

[15] Y. Altunta\cs, Z. Cömert, and A. F. Kocamaz, “Identification of haploid and diploid maize seeds using convolutional neural networks and a transfer learning approach,” Comput. Electron. Agric., vol. 163, p. 104874, 2019.

[16] Y. A. Chen, Junde and Chen, Jinxiu and Zhang, Defu and Sun, Yuandong and Nanehkaran, “Using deep transfer learning for image-based plant disease identification,” Comput. Electron. Agric., vol. 173, p. 105393, 2020.

[17] T. Sarkar, Dipanjan and Bali, Raghav and Ghosh, Hands-On Transfer Learning with Python: Implement advanced deep learning and neural network models using TensorFlow and Keras. 2018.

[18] C. Tan, Chuanqi and Sun, Fuchun and Kong, Tao and Zhang, Wenchang and Yang, Chao and Liu, “A survey on deep transfer learning,” Int. Conf. Artif. neural networks, pp. 270--279, 2018.

[19] A. J. Li, Mu and Zhang, Tong and Chen, Yuqiang and Smola, “Efficient mini-batch training for stochastic optimization,” in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 2014, pp. 661--670.

[20] M. Zhang, Zhilu and Sabuncu, “Generalized cross entropy loss for training deep neural networks with noisy labels,” Adv. Neural Inf. Process. Syst., vol. 31, 2018.

[21] J. Klein, “Understanding the Difference between Python Sparse Categorical Cross-Entropy and Categorical Cross-Entropy Loss Functions,” 2023.

[22] S. Gulli, Antonio and Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.

[23] V. Bushaev, “Adam—latest trends in deep learning optimization,” Towar. Data Sci. List., 2018.

[24] J. Kingma, Diederik P and Ba, “Adam: A method for stochastic optimization,” arXiv Prepr. arXiv1412.6980, 2014.

[25] J.-J. and others Sheu, “An Efficient Two-phase Spam Filtering Method Based on E-mails Categorization.,” Int. J. Netw. Secur., vol. 9, pp. 34--43, 2009.

[26] A. Kurniasari, D. Erwanto, dan P. N. Rahayu, “Ekstraksi Fitur Tekstur dan Warna pada Kulit Katak Menggunakan GLCM dan Momen Warna,” Jurnal ELTIKOM, vol. 6, no. 1, 2022, doi: 10.31961/eltikom.v6i1.287

[27] R. Arthana, “Mengenal Accuracy, Precision, Recall dan Specificity serta yang diprioritaskan dalam Machine learning,” Mediu. com, 2019
Published
2023-07-19
How to Cite
ZUHAN, Miftahuz; KRISTIAN, Yosi. Detection of Porang Plant Diseases and Pests (Amorphophallus Muelleri) Based on Leaf Imagery Utilizing DCNN Transfer Learning. Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem dan Komputer, [S.l.], v. 3, n. 2, p. 129-140, july 2023. ISSN 2776-6195. Available at: <https://ejournal.uniska-kediri.ac.id/index.php/JTECS/article/view/3709>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.32503/jtecs.v3i2.3709.
Section
Komputer

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.